Что это даст человечеству?
10 апреля мир впервые увидел черную дыру на фотографии. Этот сверхмассивный объект находится на расстоянии 53 миллионов световых лет от Земли и выглядит как темный круг с оранжевым ореолом. Несмотря на то что многие знают, на что похожа черная дыра, до этого все ее изображения были реконструкциями, основанными на решениях уравнений Эйнштейна. Теперь же ученые уверены: черные дыры действительно выглядят так, как их представляли. «Лента.ру» рассказывает, как был сделан снимок и что это значит для науки.
Невидимые монстры
Черная дыра, названная гавайским именем Поэхи (Powehi) — «украшенное темным источником бездонное творение», — находится так далеко от Земли, что разглядеть ее в деталях с помощью одного радиотелескопа невозможно. Как и другие черные дыры, она представляет собой объект огромной плотности и обладает настолько мощной гравитацией, что сворачивает вокруг себя пространственно-временной континуум. Искривление настолько велико, что образуется область, из которой наружу не ведет ни одна из возможных траекторий. Граница этой области называется горизонтом событий, и все, что проникает за него (включая видимый свет и другие электромагнитные волны), обратно вернуться уже не может.
Реконструкция изображения черной дыры
Изображение: Jean-Pierre Luminet
В последние десятилетия ученые не сомневались в существовании черных дыр, хотя сама природа этих объектов препятствует непосредственному их наблюдению. Исследователи применяли косвенные методы, в том числе наблюдение за объектами, которые вращаются вокруг пустых областей космоса, или измерение массы и размеров объектов, являющихся источниками интенсивного излучения. Но разглядеть черноту горизонта событий на ярком фоне звезд и газа до сих пор не удавалось никому.
По кусочкам
Чтобы сфотографировать черную дыру, необходим телескоп размером с Землю и еще один важный инструмент — алгоритм, который сведет данные в итоговое изображение. Кэти Боуман — одна из исследователей, работавших над этим алгоритмом, еще студенткой пыталась научить компьютеры распознавать образы на основе зашумленной информации. Вместе с научным руководителем Биллом Фриманом она разработала метод, позволяющий распознать объекты, «зашифрованные» в полутенях, которые отбрасывают углы зданий. В результате становилось возможным увидеть то, что находилось за этими углами.
Event Horizon Telescope — это объединенная сеть из восьми обсерваторий по всему миру, чьи радиотелескопы синхронизированы по сверхточным атомным часам. Несмотря на то что они работают как один огромный телескоп диаметром 10 тысяч километров, такая система по количеству получаемой информации все-таки значительно уступает воображаемому радиотелескопу с тарелкой аналогичного размера. Это ограничение удается немного преодолеть из-за вращения Земли вокруг своей оси, благодаря чему можно собрать еще немного радиоволн. Основная проблема в том, что итоговое изображение будет все равно сильно зашумленным. Алгоритм Кэти Боуман позволяет убрать шумы и построить приемлемую картину.
Фото: Katie Bouman
Полученную радиотелескопами информацию можно интерпретировать по-разному и сгенерировать таким образом целый «зоопарк» изображений. Однако не следует думать, что исследователи просто притянули результат к своим представлениям о том, как должна выглядеть черная дыра. Существуют строгие ограничения, продиктованные тем, что астрономам известно о космосе. Ученые знают, на что должны быть похожи астрономические объекты и на что они не похожи. Это позволяет отсеять огромное количество вариантов, изображающих то, что не может находиться в центре галактик.
Допустим, мы запускаем симуляцию, в которой генерируется черная дыра в соответствии с предсказаниями теории относительности Эйнштейна, после чего экзотический объект помещается в центр Млечного Пути. В результате моделируются данные, которые в этом случае должен получить Event Horizon Telescope. Если бы черная дыра на самом деле выглядела иначе (или ее вообще не было), данные телескопов были бы совершенно другими и алгоритм Боуман мог бы получить совершенно другие изображения.
Алгоритм, в свою очередь, подобен сборщику пазла. Он анализирует скудные данные, полученные телескопами, и выстраивает на их основе общую картинку, используя фрагменты тысяч введенных в него изображений космических и даже земных объектов. Если из различных наборов изображений получается именно изображение черной дыры (которую мы симулировали), то ученые могут быть уверены, что алгоритм работает правильно.
То есть в какой-то степени реконструированная фотография черной дыры является коллажем из фрагментов различных снимков, даже повседневных. Если бы алгоритм был плохим, результат сильно бы зависел от набора введенных изображений, и вместо черной дыры исследователи получили бы, например, фотографию со свадебной церемонии.
Кадр: фильм «Интерстеллар»
Все сошлось
Полученное изображение сверхмассивной черной дыры в галактике М87 соответствует предсказаниям теории относительности Эйнштейна, позволяющей определить массу и диаметр этого экзотического объекта. Размером она превосходит Солнечную систему и достигает 40 миллиардов километров. Кроме того, она содержит массу 6,5 миллиарда Солнц. Однако самое примечательное в той фотографии, ради чего она и была сделана, это темный круг в центре раскрашенного в условные цвета ореола. Это тень черной дыры, которая соответствует горизонту событий.
Саму черную дыру невозможно увидеть, однако ее тень хорошо различима на фоне поглощаемого вещества. На Землю смотрит полюс Поэхи, поэтому астрономы видят раскаленный газ, вращающийся вокруг черной дыры, «сверху». Однако даже если бы черная дыра была видна сбоку, расчеты показывают, что вещество движется по таким траекториям, что тень все равно была бы видна. Интересно, что по форме тени можно определить различные свойства черной дыры (например, является ли она вращающейся) и отличить ее от червоточины (кротовой норы).
Будущие свершения
Чтобы узнать новые детали о космическом монстре в М87, ученым предстоит подробно изучить фотографию. Кроме того, сейчас исследователи заняты обработкой данных, полученных при наблюдении центра Млечного Пути, где находится черная дыра Sgr A*. Вполне возможно, что скоро будет опубликован более впечатляющий снимок сверхмассивной черной дыры, располагающейся куда ближе Поэхи, «всего лишь» в 25 тысячах световых лет от Земли. Поскольку Млечный Путь намного спокойнее эллиптической и активной М87, то астрономы смогут узнать больше о поведении черных дыр в различной среде.
Изображение: EHT Collaboration
В будущем астрономы получат еще больше инструментов, которые войдут в сеть Event Horizon Telescope. Так, национальная обсерватория Китт-Пик в штате Аризона (США) и миллиметровая решетка NOEMA во французских Альпах присоединятся к проекту в 2020 году. Это позволит лучше рассмотреть процессы, протекающие в непосредственной близости к черной дыре. К ним относится релятивистская струя, которая выбрасывается из ядра М87 и простирается на пять тысяч световых лет. А использование электромагнитного излучения чуть большей частоты должно несколько повысить четкость новых фотографий.
К сожалению, Россия остается на обочине и не участвует в проекте. По словам Вячеслава Докучаева, ведущего научного сотрудника Института ядерных исследований РАН, у страны нет радиотелескопа миллиметрового диапазона, который можно было бы сделать частью Event Horizon Telescope.